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TABLES FOR THE STEP-BY-STEP INTEGRATION OF ORDINARY

DIFFERENTIAL EQUATIONS OF THE FIRST ORDER

by

William F. Pickard

Division of Engineering, and Applied Physics

Harvard University, Cambridge, Massachusetts

ABSTRACT

A study is made of the step-by-step integration of ordinary differential

equations of the first order by means of formulas obtained from the Gregory-

Newton backward interpolating formula. Tables of relevant constants are

presented
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Consider the ordinary differential equation of the first order

y' = f(y, x) (1)

which is tobeintegrated step-by-step over x = a (h) b . A natural method

for accomplishing this integration is a predictor-corrector process based upon

a suitable finite difference interpolating formula.

Let x be a tabular point within (a, b) and assume that y 0 is known

x - a
at the points x j =x 0 - jh (j = O, 1 . h One can then write for

y' the approximation to it which is provided by the Gregory-Newton backward

interpolating formula

J=7 --- (u j- Af+ hJ+l 1 (Jll)
y, =I (1 +j 1)[j]Ajf+j 1 (u+J)[J+l ] (j+) W (2)

j=O

where u = (x - xo)/h, A f_j is the jth forward difference of y' about

x P x < :S x_ P and (u 1.)IlJ is the factorial polynomial

which possesses the expansion

(11 .1)[J] = Si u j - k  (3')

k=O

where the 1 SJ are the generalized Stirling numbers of the first kind [1]

The formula (2) can be integrated in two fashions. In the first it is assumed

that y0, y 1, .. ' y-j are accurately known and that a prediction of

yl = y(xl ) is desired:
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y(xl yo + hZ V j Ajf. + Ej PREDICTOR (4)

j=0

where the error Ej is given by

IIEjI : hJ+Z pj+i Jf(S+) 5)
max

and
1

1 C. 1[j]
Qj_ = - (u+ - 1) du (6a)

0

=- Si (6b)
i -(j-i) pp=0

= L(3 j! "(6c)

where L(j) is the least common denominator of I/i, 1/2, ... i/(j + 1).

In the second method it is assumed that y_,, * , Y-j are accurately known,

that y0 is approximately known, and that a corrected value of y0 is desired:

Y(X) Y- 1 
+  A.f + E CORRECTOR (7)

j=O

where the error E* is given by

I EJ*I < hS'+ZipT+l*I If(J+l)imax (8)
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and
0

S(u +j 1)[j du (9a)

-1

S+ (-i)J"p  S (
T / j+l-p -(j-1) p {gb)

p=
0

- (9 C)L(j)j

This corrected value of y0 can its.elf be used in (7) to obtain what is

presumably a ,still better value of y0 , and this proces.s can be repeated

indefinitely until it converges to a final value or, in bad cases, is seen to be

divergent. The use of (4) to obtain an initial estimate and the repeated

use of (7) to improve this value constitutes a well-known predictor-corrector

process,

The quantities p. and p. , as defined by (6a) and (9a) , respectively,

have been described by Collatz [2] and tabulated by him for j 0(1)6. The

increasing use of digital machines - often in double precision - for the

integration of differential equations has made a somewhat extended table

of these coefficients desirable and the existence now [1] of extensive tables

of the tSk has made possible the simple computation from (6b) and (9b).

Table I presents the results of such an extension; the table entries were

checked using the recursion relation [2]

*J~+I =1S ~ (10)
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Figure I presents a graph of these coefficients. The p. can be seen to fall

off slowly and can be shown, from (6a), to satisfy the inequality

< j_> 0 (11 a)'
+A~

which implies that their decline is very slow indeed. The 3. can be seen

to fall off somewhat faster; this is to be expected since, from (6 a) and (9a),

* j>2 (1 b)

These data point up the intrinsic superiorities of corrector formulas over

predictor formulas: (i).that, since IP *1 < 1PjI the series (7) converge-s faster

than the series (4), and (ii) that, since the P. decay much faster than the

P. , the buildup of computational error in the taking of successive differences

vvwill, for a given number of terms in the interpolating series, have much

less effect on the final answer when a corrector formula is used.

In actual practice the calculation of the several differences is often

not carried out. Instead,the differences are expanded as

&if=j = rpj f-p (12)

p=o

and (4) rewritten as

Y(X) Yo + h yp P f-p + Ej (13a)

j=O p=O
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3

y + h / cp(J) f- + E (13b)

p=O

Y+ h (J -+ E (1 3c)
0 L(J)J-! p p(~

a

p=0

while (7) can be rewritten as

Y'(Xo) y 1 + h 7(I P7 fp + (l 4 a)

j=o p=O

J
=y +h *(f + ( 14b'=Y-I + h a p .(J) f-p +E( b

p=O

J
h

=Y- + -L(J)J! a p (J)f-P + (4c)

p=O

The calculation of the next value of y can then be accomplished directly

from (13c) or (14c) and the labor of maintaining a difference table thereby

eliminated. Tables of 6 (J) and 6 * (J) have been computed for J = 0(1)10p p

and p = 0(1)J and are given in Tables II and III, respectively; they

represent a considerable extension over the existing tables [2, 3] which go

at most to J = 5. The values of 6 p(J) and a p*(J) were checked by

the relations []

The values of a (5) given in Reference 3 are believed to be in error.p
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J

i = C( (J) (I 5a)
p=O

J

I = ) ap (J) (15b)

p=O

and by having key portions of the computations individually repeated.

The selection of a predictor-corrector pair for a specific problem

is by no means simple, it being necessary to choose J and h with care

to minimize the effects of roundoff and truncation error. However, for

modern digital machines operated in double precision, J = 10 will probably

be as large as is profitable since by this point the computing error generated

in calculating the 2if . will be growing much faster than the P * will be

decreasing, and the total error due to this cause will normally be at least as

important as the truncation error E Finally , for suitable f(y, x), it

may be desirable to suspend the common practice of using a low order predictor

to obtain an estimate of the next point which can then be improved using a

high order corrector; the existence of high order predictors makes the

initial use of a high order predictor formula and the suspension of corrector

iterations seem attractive where the superior roundoff suppressing properties

of a corrector formula are not essential.



-7-

REFERENCES

1. W. F. Pickard, "Tables of the Generalized Stirling Numbers of the First
Kind, " Cruft Laboratory Technical Report No. 404 , Harvard
University, Cambridge, 1963.

2. L. Collatz, "The Numerical Treatment of Differential Equations,
Third Edition, Springer-Verlag, Berlin, 1960.

3. P. Henrici, "Discrete Variable Methods in Ordinary Differential Equations,
John Wiley and Sons, Inc. , New York, 1962.



00 0DITRIUTIO LIST

A~~~~lI.Ily~~~B... ,ip~ Tll.., 0.L,.,. 5)To,,dLII,.

C S- ,l..4g 0.t., l 000 C11001

O=yI0 I.TP R SP -h. .... ... (t) AI1.1.LIoL.. dl T.I1111, If.. C-,17l..l P,.l Oll~l. WogH F.U.I., All F,.11. .1. 54.,0l,

0.,. 311 ... .,0 0.oo.,dB.. 1 .,95 . (a0N0)I... I

Al,. 1700 TI1~l. A.., Pc D1. H. 0-p.',,

AlC..11 ,J*d .ITlg . . A1110 T..,IIT s.,

0.1.1 0LS..IT -Ig, AOt AF0I.Il C..- 711. I..S.,01A
.. l..o I5, .0. ) Al.. Q. OT015,A01.lUl,: T . A.. Itl " ,.l -SITL P.Il-k SAl , N,. . 5 A 0, op 0 I..

A..s4, STOOL.' ".,1 Dl .. ~,.0,.
AlSO, ~ ~ ~ ~ ~ ~ ~ t M.00 00 00lkIl.., LT,.S. . t. OS,.l f 00.1 .,1 10000

d,11,lS T,,,,.t.l I C. I, (5) S.I.. T..l 0.p 0. I AIl, 7o.N- . 11 1 001,I
Pll., 119,.0,.l, All,: Al- -t~,1 W.0l~~ I .- 0,K .,05 I.0

AN.0LTNPA.L.I.. -. A.,1, 0.. 0..0.1,W-11My .. d : -I... B

7."''l 0. So, ISI I) A1LIl:0 AlMI..11, SIIlA 0 .I,1t, 0 .l PI .A1I,., SSPH 1
I.l '. C A-T

1
11 f5:5011B&_ IN S,0-Agl1

A ll, A .01 0 AC..l T o l . 7 ,.1 1 ol . T , . P . : g SOf o p ,l . ,.i c, .1 4 1

-1 . -I RIT.,. I..... I Tc.I"tg. I,.0 .. 01111. .I1,If 111,
O111101 l... _dI -1l.p-I1, It.-10I ".t1~ , 0.0 ... 1..I C1,1,, 0.1, So O.. 0 1111,, 51

AII~ A.TIT 0A IID.1
Ooo..Ai.g ,, -C.1,l .1 0,.A,60 10,. -0....I. IN, Il.,.l1i1IA1

S11SS1.,,C SIB: S .o,,,O.0 .Aol.y 4, 4 .,

D.Pl. I5 0. . 14Io ".1 0. h..c

Ooo 81 ,tAi,,I0111N-r

=11,:I Air,1p For.., LI.l.

-1 .1 .- 1..... hl:~1 Ahl, 1 -- -OC. to..1

.01 ,. ...0 . o l N -1 .. A 7 1 1 1 0 . .. . M 1 1. . T .- . . l l l . I N 5 . .. y T .

All.1. Ald. 7,11.110,1,1,0

111 D' l, 01111,1 0. 1 .l , 0....oO,,.ty 111h 0.
0 .It P11,0 01. 11110 01,01l~. S 0 .o: 11 0.1,i~l0,l...ll

001 DL11 ..4 l AlI:TSS0 ,I, A- 00L101l ,.,.,

.AS. T .I I0.1.11 L,.,.:,A,. f l I- En . II

111-1y, ~ ~ .C111-1101,.,N D,:
00000 .,Al, 0.1110,l .:,.~l.:,0.1

At..,: SUN,,,, -1--,,I. &.1. D1 P...1 ....

o,,,.od AL .:lREC y40 PA,,..
01.00 0 .11:t.. C1,, 0..nd ., C. .... SlO C oO1g O .. , o.,

0.l1 1P , . . L R-0,, A ll ot,l.- 000. LI-Lt..1,,,,.

1111- AT4., -- 13-,, -- d, ASI...

SI,.0,1 A.11 A~I I,40. , U1,,A1.F.OO ,,0.,,S or

iTO 111.1A," Albl~. .. ,o I', .. 0,ll ....... AI, W.T.AII ,~o . A,.,51

0,:'0,,, O A , A n:O . 1 0.4. 0:,ALb~0 . Y.. 0. . 0,

5, 0 0D. lOS All,: 010101 145 .

T,0 010 F.-.. 0..lI,0,,. 011111 0., ,..b,td, 110, ... L 0. r W~, ,
C', ,IT .rl.,OI R... '0,151, .....,1

P. ~~ ~ ~ -b, 0.- TDoSkg...r .1.,C SII01. S 0,~l 0..O0.Tl. 1,.:

C. - . 1. 00.,, S11~ . 'N'0~ 1,',,0000 1,

P0,., 1-1., ... Id1A.0.0.Al- AATL1 A.0lt,011.5..II


